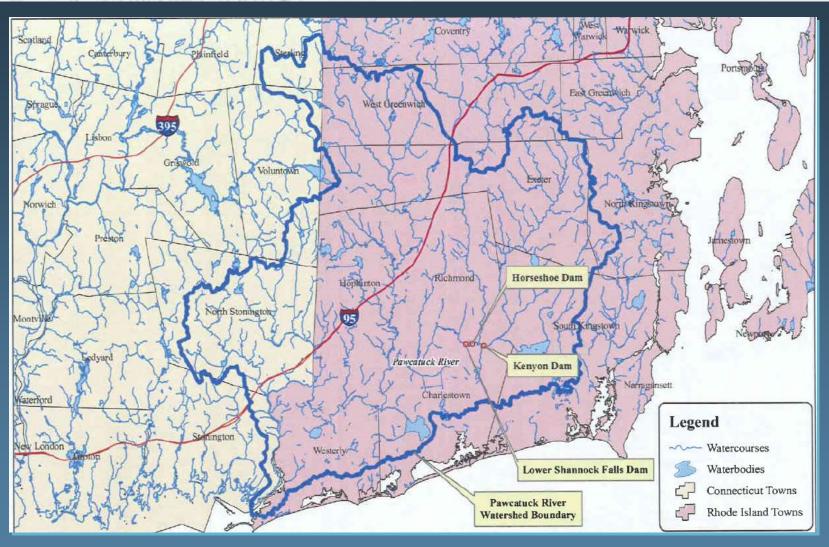
Kenyon Mill Dam Fish Passage Project

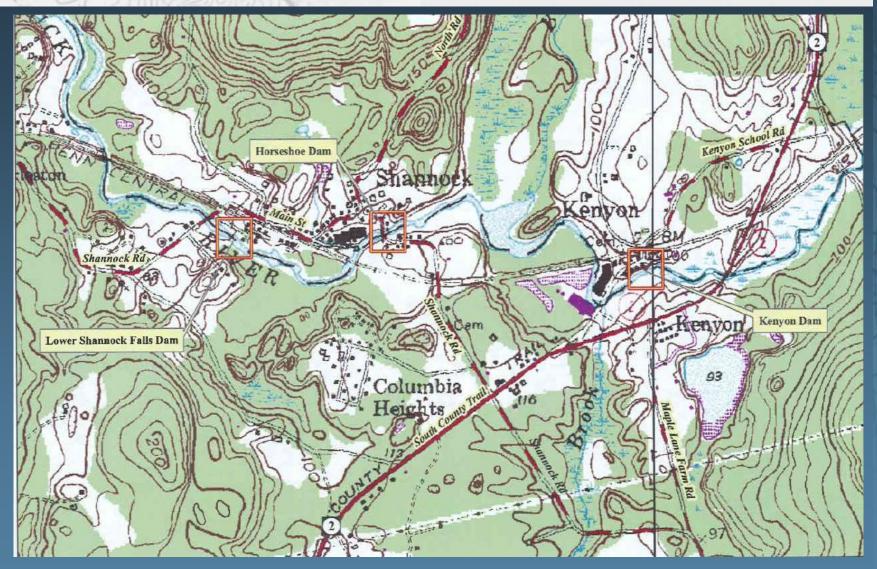
Public Informational Meeting Richmond/Charlestown, RI

April 12, 2011 7:00 P.M. – 9:00 P.M.



Agenda Kenyon Mill Dam Fish Passage Project

- Introduction (5 min.)
- Project Background (5 min.)
- Project Description (50 min.)
 - Site Description
 - Previous Dam Assessments and Current Condition
 - Feasibility Study Alternatives Evaluations
 - Data Collection and Assessments
 - Fish Passage Alternatives Analyses
 - Next Steps
- Questions and Discussion


Agenda Kenyon Mill Dam Fish Passage Project

Site Description

Source: August 2007 Malone and MacBroom Feasibility Study

Watershed and River Continuity Map

Upper Pawcatuck River Project Site Locations

Target Fish Species

- Alewife
- Blueback Herring
- American Shad
- Atlantic Salmon
- American Eel
- Resident Fish Species
 - Brown Trout
 - Brook Trout

- 1772 Iron Works Mill
- 1820 Sold by T. Holburton to Lewis Kenyon, Became Cotton/Woolen Mill
- 1844 Lewis Kenyon's Sons Expanded Mill
- 1857 Elijah Kenyon, Sole Owner of Mill (Woolen Mill)
- 1881 Expanded Mill Complex (E. Kenyon & Son)
- 1894 Expanded Mill Complex Including Rerouting River Through Mill (First Date When Dam is Referenced)
- 1911 Mill and Equipment Sold to F.P. Smith of Boston
- 1936 Mill Bought by Kenyon Piece Dye Works, Large Scale Improvements
- 1996 Mill Operating as Kenyon Industries

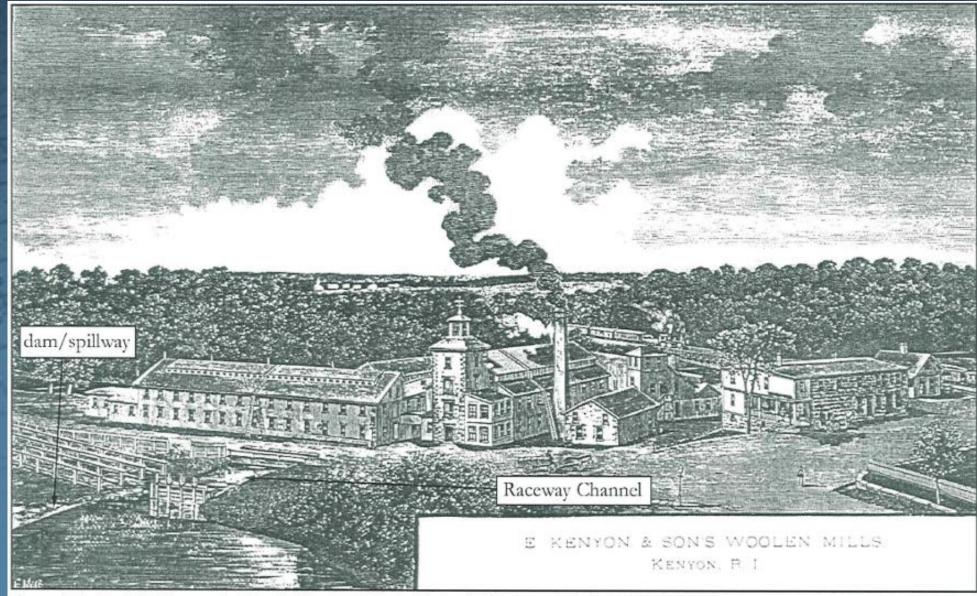


Figure 5-1. Ca. 1889 lithograph of the E. Kenyon & Son's Woolen Mills (source: Cole 1889).

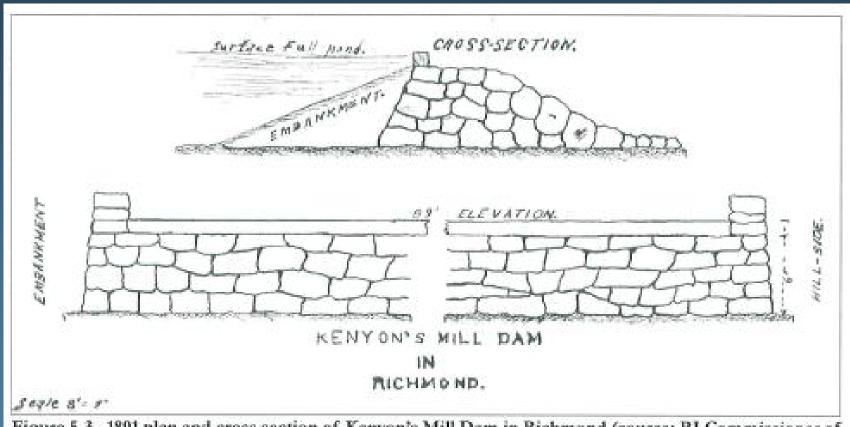
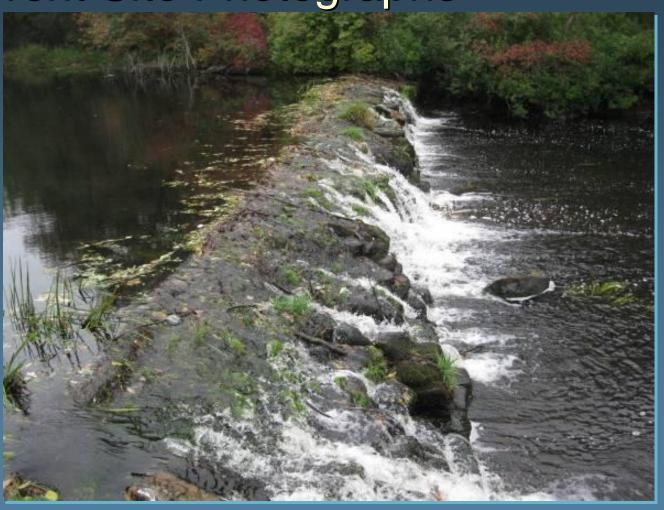


Figure 5-3. 1891 plan and cross section of Kenyon's Mill Dam in Richmond (source: RI Commissioner of Dams and Reservoirs Annual Report 1891).

Source: RIGIS/URI

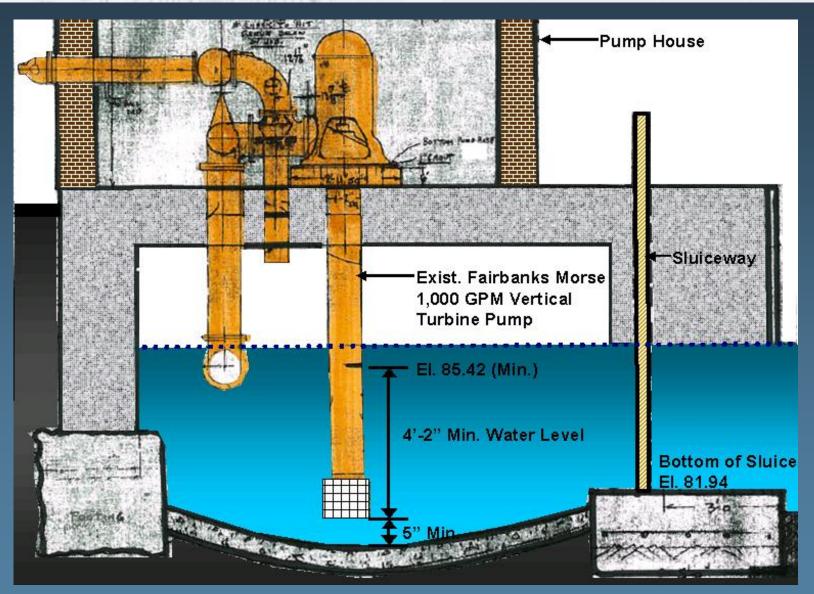
1939 Site Aerial


Existing Dam at Kenyon Industries

Agenda Kenyon Mill Dam Fish Passage Project

Previous Dam Assessments and Current Condition

Existing Spillway – August 2009


Existing Spillway – October 2010

Mill Fire Suppression System Intake - March 2009

Mill Fire Suppression System Intake - August 2009

Kenyon Industries Fire Suppression Pump Intake System

Current Condition of Dam

- Partial Breach at End of Spillway on River-Left (Charlestown side)
- Spillway Section in Need of Repair
- No Low-level Discharge Outlet
- Current Visual Assessment of Spillway Reflects POOR Condition

Agenda Kenyon Mill Dam Fish Passage Project

2007 Feasibility Study Alternatives Evaluation

2007 Feasibility Study Alternatives Evaluation Kenyon Mill Dam Fish Passage Project

Feasibility Study Alternatives

TABLE 5-1 Summary of Alternatives Considered

Alternative	Description
	Kenyon Mill Dam
K-I	No Action
K-2	Fish Ladder on Right Bank
K-3	Bypass Channel Through Existing Breach
K-4	Full Dam Removal
K-5	High Gradient Riffle

SHANNOCK HISE PASSAGE PEASSBELTY STEEN

PAWCATUCK BIVER.
RECEDIORD AND CHARLESTOR'S, RHODE ISLAND.

Augen 10, 2007

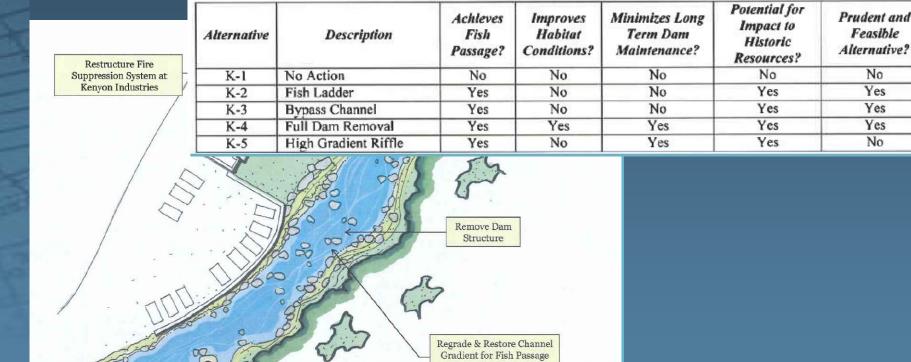
Property See

Weod-Parograph Wagneled Association 200 Artacle Bond Hope Volley, Rhode Intent 60873

Present to

MECOR & MACRESON, INC 99 Really Drive Clerkine, Consortion Biblis (201) 270-1271

Quitonia Muchaner


Source: August 2007

Malone and MacBroom Feasibility Study

2007 Feasibility Study Alternatives Evaluation Kenyon Mill Dam Fish Passage Project

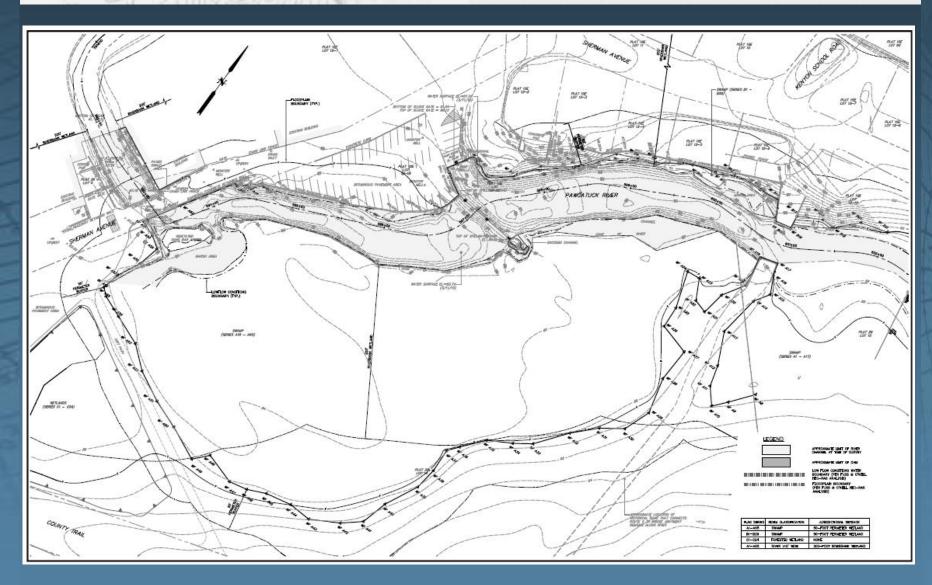
Alternatives Evaluation Summary Table

TABLE 8-10 Summary of Alternatives at Kenyon Mill Dam

Source: August 2007

No

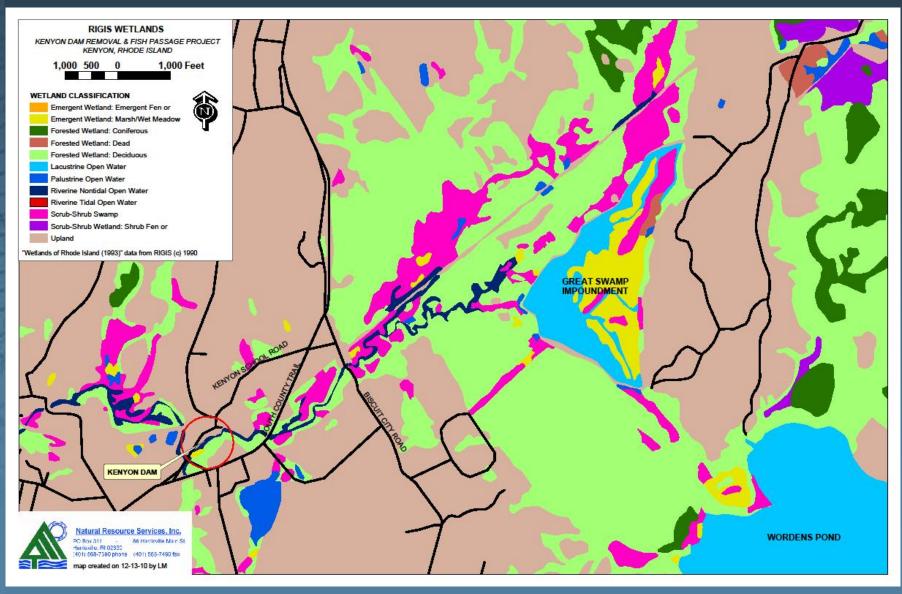
Yes

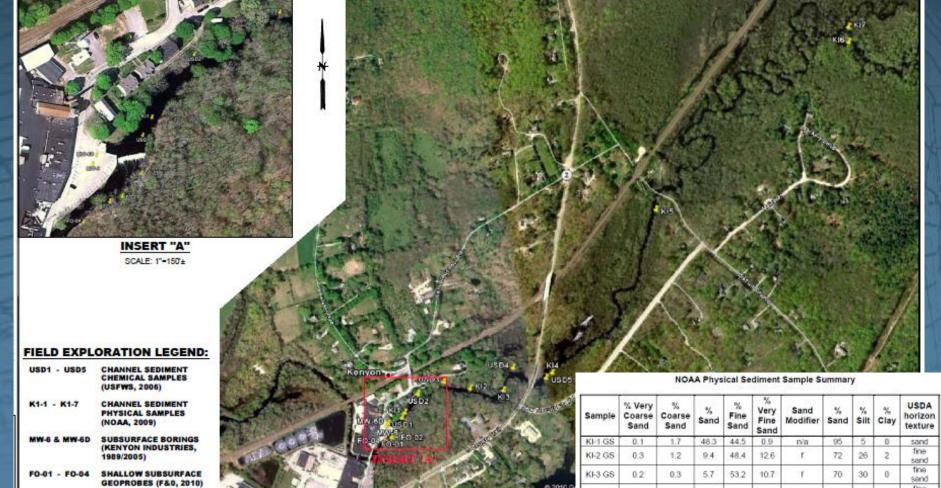

Yes

Yes

No

Agenda Kenyon Mill Dam Fish Passage Project


Data Collection and Assessments


Site Survey and Topographic Mapping

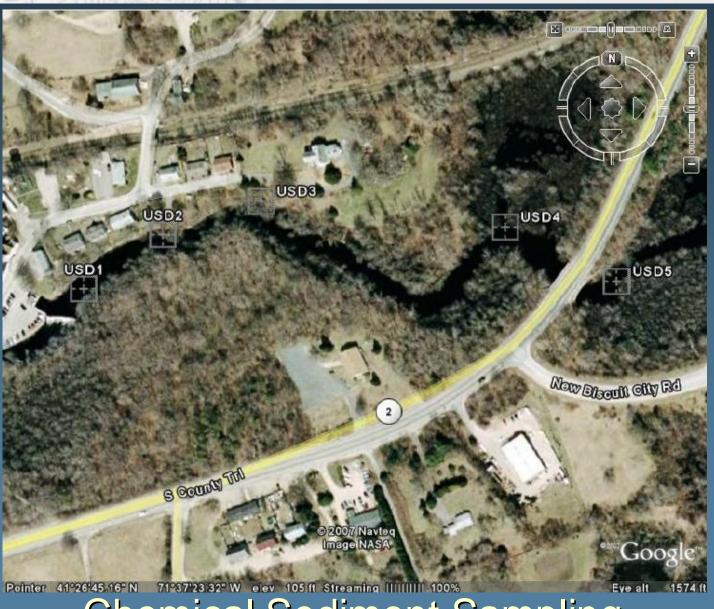
Site Survey and Topographic Mapping

Existing Wetland Resources

Physical Sediment Sampling

KI-4 GS 1.7 4.0 31.6 13.0 50 46 0.1 sand KI-5 GS 1.0 14.0 55.5 7.6 78 22 sand KI-6 GS 2.9 8.2 46.9 6.4 66 28

sand


Sonzon: Antenment of Disdremon Fish Passage Restriction on the Passathole Reset, Windragine George, Ebish Island (NOAA, August 2009)

51.2

0.4

0.9

6.5

Chemical Sediment Sampling

Summary Table of Sediment Test Results Kenyon Mill Dam Samples Collected by USFWS on Aug. 17, 2006

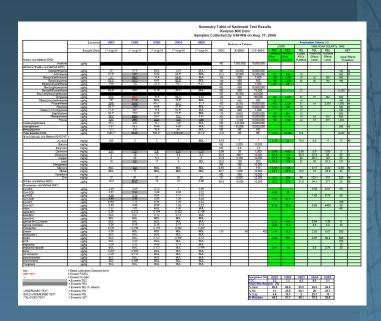
	Location	USD1	USD2	USD3	USD4	USD5	-	eference Crite	Freshwater Criteria (1)							
		- 1		1	3	9		elerence Crite	па	(2)	000)		1999 NOAA SQUIRTs, 1999			
	Sample Date	17-Aug-06	17-Aug-06	17-Aug-06	17-Aug-06	17-Aug-06	TEC	R-DEC	I/C-DEC	TEC	PEC	TEL	TEL	PEL	U	ET
VOCs (via Method 8260)										Threshold Effect Concentr	Probable Effect Concentr.	ARCs H.azteca	Effects Level	Probable Effects Level		Effects
Acetone	µg/kg						NE	7,800,000	10,000,000							
SVOCs/PAHs (via Method 8270)	2000 00 00							V-7	9	**			Y 1			
Acenaphthylene	µg/kg	35	81.9	BDL	23.6	BDL	NE	23,000	10,000,000	3		i and	100	1	160	M
Anthracene	μg/kg	27.8*	128*	5.52	24.5*	BDL	57.2	35,000	10,000,000	57	845	10	- B		260	M
Benzo(a)anthracene	µg/kg	74.1°	382*	11.4	53.4*	BDL	108	900	7,800	108	1,050	16	32	385	500	1
Benzo(a)pyrene	µg/kg		311*	8.61	50.8*	BDL	150	400	800	150	1,450	32	32	782	700	1
Benzo(b)fluoranthene	µg/kg	189	720	21.3	10.7	4.57	NE	900	7,800	NE	NE					
Benzo(ghi)perylene	µg/kg	43.8*	160*	6.76	36.6*	BDL	NE NE	800 900	10,000,000	10		27	31	3	13,400	_
Benzo(k)fluoranthene	µg/kg	40.0	100	0.70	30.0	DUL		46,000	78,000 410,000		_	27			13,400	Б.
Bis(2-ethylhexyl)phthalate Chrysene	μg/kg μg/kg	118*	2011	18.6	89.1*	5.02	NE 166	400	780,000	100	1.000	27	57	862	800	
Dibenzo(a,h)anthracene	µg/kg	15"	71.9	BDL	14.6*	BDL	33	400	800	100	1,230	10	3/	002	100	14
Fluoranthene	µg/kg	264*	1020*	45./*	20/*	11.1	423	20,000	10,000,000	423	2.230	31	111	2.355	1,500	M
Fluorene	µg/kg	26.1*	115*	6.96	37.8*	BDL	77.4	28000	10.000,000	77.4	536	10	1.0	2,000	300	M
Indeno(1,2,3-cd)pyrene	µg/kg	71.8*	306*	11.5	63.4*	BDL	NE	900	7,800			17	. 16		330	М
Naphthalene	µg/kg	33.1*	173*	9.73	71.5*	BDL	176	54000	10,000,000	176	561	15			600	1
Phenanthrene	μg/kg	143*	<u>671*</u>	24.8*	152*	8.87	204	40,000	10,000,000	204	1,170	19	42	515	800	1.
Pyrene	µg/kg	106*	344*	323*	/53*	/54°	195	13,000	10,000,000	195	1,520	44	53	875	1,000	1
Methylnaphthalene	µg/kg	64.2	298	12.7	126	BDL	NE	123,000	10,000,000							20
cenaphthene	μg/kg	5.61	59.2	6.99	9.88	BDL	NE	43,000	10,000,000	ei.			- 0	8	290	M
enzo[e]pyrene	µg/kg	/2.2	320	10.6	58	BDL	NE	NE	NE	0		0	0	9	· · · · · · · · · · ·	
otal Selected PAHs	μg/kg	1345.7*	5642*	524.2*	1781.9*	781.4*	1,610	NE	NE	1,610	22,800	264			12,000	М
otal Metals (via Method 6010/7471)												.,				
Arsenic	mg/kg	0.6	3	1	1	BDL	9.79	7	7	9.79	33	10.8	5.9	17	17	М
Barium	mg/kg						NE	5,500	10,000	Tr.			7/			-
Beryllium	mg/kg						NE	0.4	1.3		1					-
Cadmium	mg/kg	0.9*	1.3*	0.9*	1.3*	1.1*	0.99	39	1,000	0.99	4 98	0.58	0.6	3.53	3	1
Chromium	mg/kg	3	12	11	5.4	6.3	43.4	390**	10.000	43.4	111	36.3	37.3	90	95	н
Copper	mg/kg	4	22	5.4	4	2	31.6	3,100	10,000	31.6	149	28	35.7	197	86	1
Lead	mg/kg	10	79*	17	9	BDL	35.8	150	500	35.8	128	37	35	91.3	127	н
Manganese	mg/kg	77	75. 35				NE	390	10,000				- 9	4		
Mercury	mg/kg	BDL	0.2	BDL	BDL	BDL	0.18	23	610	0.18	1.08		0.17	0.49	0.56	M
Nickel	mg/kg	BDL	5	BDL	BDL	BDL	22.7	1,000	10,000	22.7	48.6	19.5	18	35.9	43	Н
Vanadium	mg/kg						NE	550	10,000							
Zinc	mg/kg	17	81	27	29	29	121	6,000	10,000	121	459	98	123.1	315	520	М
CBs (via Method 8082)	µg/kg	19.2	80.8*	10	18	9.08	59.8	10,000	10,000	59.8	878	31.6	34.1	277	26	M
esticides (via Method 8081)	- COOL - CO	1		1	P.	7		V-	7				- 10			
p-DDD	μg/kg	2.68	3.08	0.72	1	0.06		- 3	0.00	8		B) 3	3.54	8.51	60	1
im-DOD	μg/kg	3.87	5.93	1.28	2.28	0.22		1 8	3	4.88	28	8	- 100	3		1
p-DDE	μg/kg	3.32	3.13	0.81	1.11	0.22		3	5 6	8			1.42	6.75	50	1
um-DDE	μg/kg	3.49	3.45	0.93	1.28	0.48		- 2	8 8	3.16	31.3			ii i	- 4	1
p-DDT	µg/kg	0.697	1.76	0.45	1.38	0.52									<50	1
um-DOT	μg/kg	0.83	2.09	0.52	1.54	0.52	3		1	4.16	62.9	80 3	6.98	4450	50	1
drin	μg/kg	1.07	7.65	BUL	1.36	BDL									40	
pha-BHC	μg/kg	0.05	0.212	0.154	0.132	0.158	- 3	15	23				7		- 5	
eta-BHC	µg/kg	BDL	0.07	0.12	0.13	BDL		0	9				- 9	9	- 6	
elta-BHC	µg/kg	BDL	BDL	BDL	BDL	BDL	- 1	0	0 9							
amma-BHC (Lindane)	µg/kg	80L 0.08	BDL 0.15	8DL 0.15	8DL 0.17	BDL 0.13			0 0	2.37	4,99		0.94	1.38	9	1
mma Chlordane	µg/kg	0.00	0.15	U.15 U.154	0.17 0.382					3.24	17.6		4.5	8.9	30	1
niorpyrifos ekirin	µg/kg	0.231	BDL	BDL	BDL BDL	0.296 BDL	1.9*	40	400	1.9	61.8		2.85	6.67	300	
eidhn ndosufan II	µg/kg	BDL BDL	BDC	BDL	BDL	BDL	1.8	40	400	1.8	01,8	100	2.80	0.07	300	
ndosuran II	µg/kg	BDL	BDL	0.12/	U.146	0.13		_		2.22	207		2.67	62.4	500	
CB	µg/kg µg/kg	BDL	0.08	BDL	BDL BDL	BDL			65 (6	6.66	201		2.01	02.4	100	
eptachlor	µg/kg	0.08	0.32	0.08	0.13	BDL	- 3	- 3	2		-		- 2		100	
eptachior eptachior epoxide	pg/kg	BDL	BDL	0.00	BDL	0.164	-	- 3	8	2.47	18		0.6	2.74	30	
rex	µg/kg	0.201	0.499	BUL	BDL	BDL	-		0.00				0.0	2.77		
s-Nonachior	µg/kg	0.06	0.112	BDL	BDL	BDL										-
ans-Nonachior	µg/kg	BDL	BDL	BUL	BDL	BDL			7				- 19	8		-
xychlordane	µg/kg	BDL	0.306	BDL	BDL	BDL										
oxaphene	µg/kg	BDL	BDL	BUL	BDF	BDE										

BOL RED TEXT

= Below Laboratory Detection Limit = Exceed R-DEC

= Exceeds PEC

BOLD UNDERLINED TEXT


= Exceed I/C-DEC = Exceeds TEC

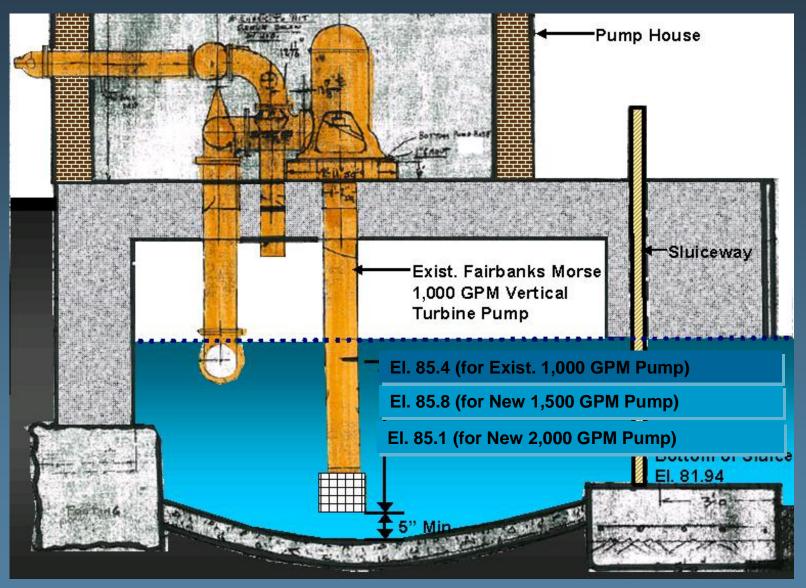
= Exceeds TEL (h. azteca) = Exceeds PEL = Exceeds UET

Inorganics (%)	USD1	USD2	USD3	USD4	USD5		
TOC	2.5	7.3	4.3	8.9	5.1		
Grain Size Ana	ysis (%)						
% Sand	89.4	60.4	65.2	63.6	64.4		
% Silt	5.7	25.8	26.1	26	25.7		
% Clay	4.8	13.7	9	25.7	10		
% Moisture	44.2	61.7	66.1	70.5	53.8		

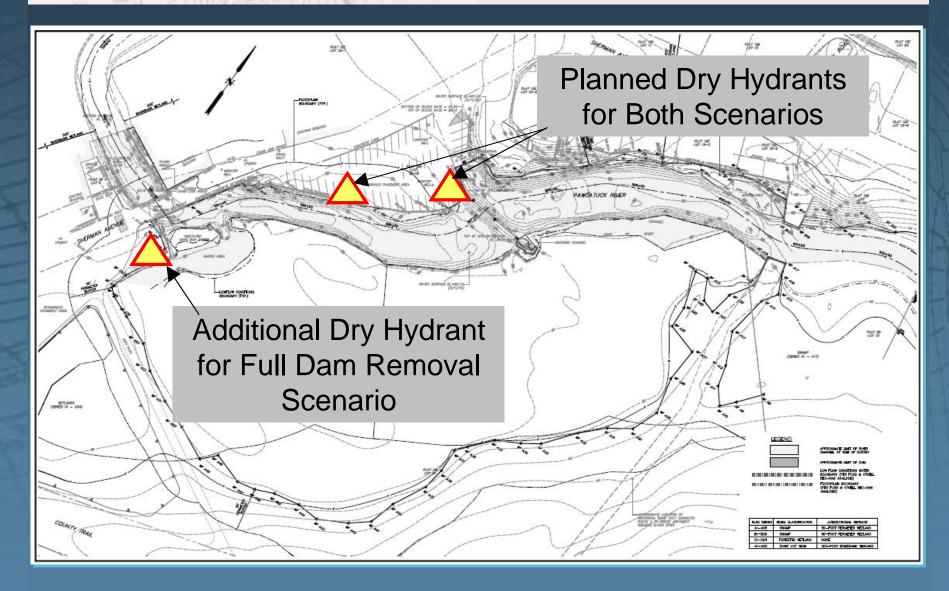
Summary of Chemical Sediment Sampling

- Only one parameter in one sample exceeded RI Direct Exposure Criteria
- All results consistent with prior/historical use at the site and along the river
- Sediment Management
 Plan to be developed and implemented for the project

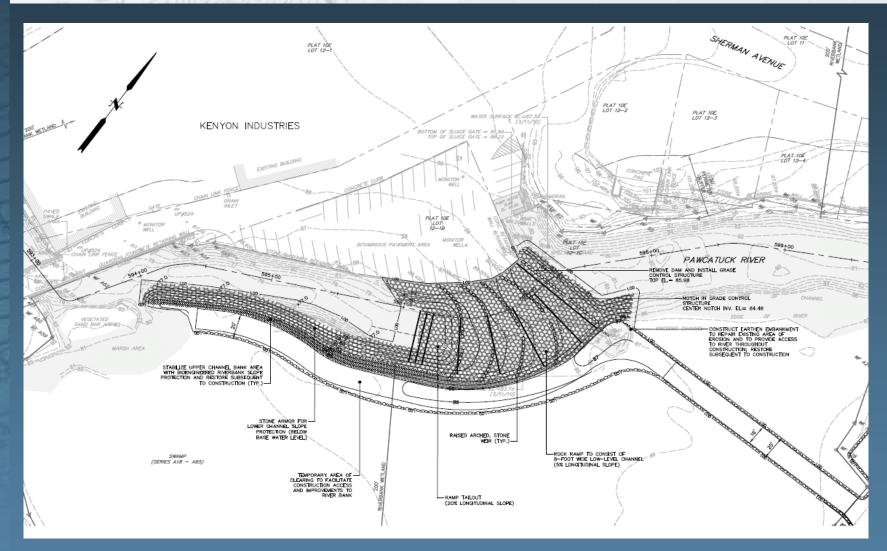
Agenda Kenyon Mill Dam Fish Passage Project

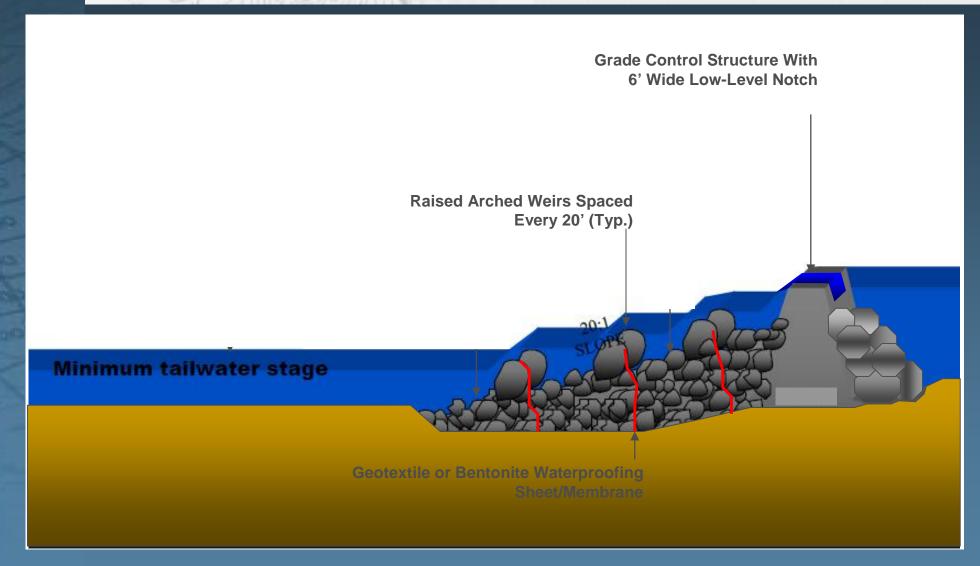

Fish Passage Alternatives Analyses

Fish Passage Design Alternatives


- Rock Ramp Construction
 - Replaces Dam Spillway with a Rock Ramp (approx. 160-feet long)
 - Minimal Water Level Change or Effect on Upstream Wetland Resources
 - Continued Use of River by Kenyon Industries' Fire Suppression System
 - Portage Path Planned for Recreational Boaters
- Full Dam Removal
 - Spillway Removed, Potential Modifications to River Channel to Optimize Fish Passage
 - Water Level Lowered to Pre-Dam Levels, Some Effect on Upstream Wetland Resources
 - River Likely No Longer Used for Kenyon Industries' Fire Suppression System
- Neither Alternative Will Have an Effect on Worden Pond Water Levels

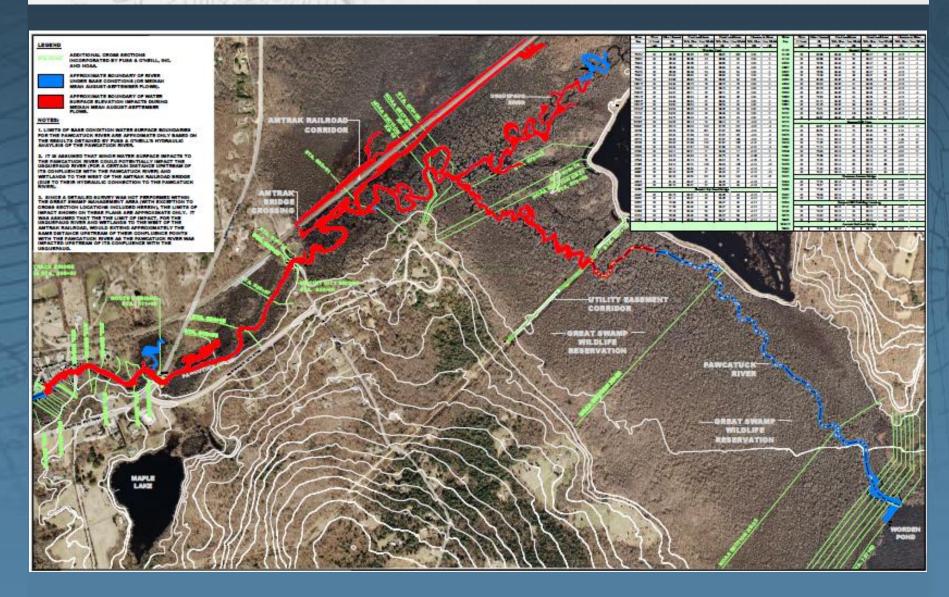
Rock Ramp Alternative


- Replaces Dam Spillway with a Rock Ramp (approx. 160feet long, length determined in final design)
- Minimal Water Level Change and Sediment Migration
- Minimal Effect on Upstream Wetland Resources
- No Effect on Upstream Shallow Groundwater Supply Wells
- No Potential for Scour at Upstream Bridges
- Continued Use of River by Kenyon Industries' Fire Suppression System, Two Dry Hydrants Installed
- Requires Continued Maintenance
- Less than Optimal Fish Passage Efficiency

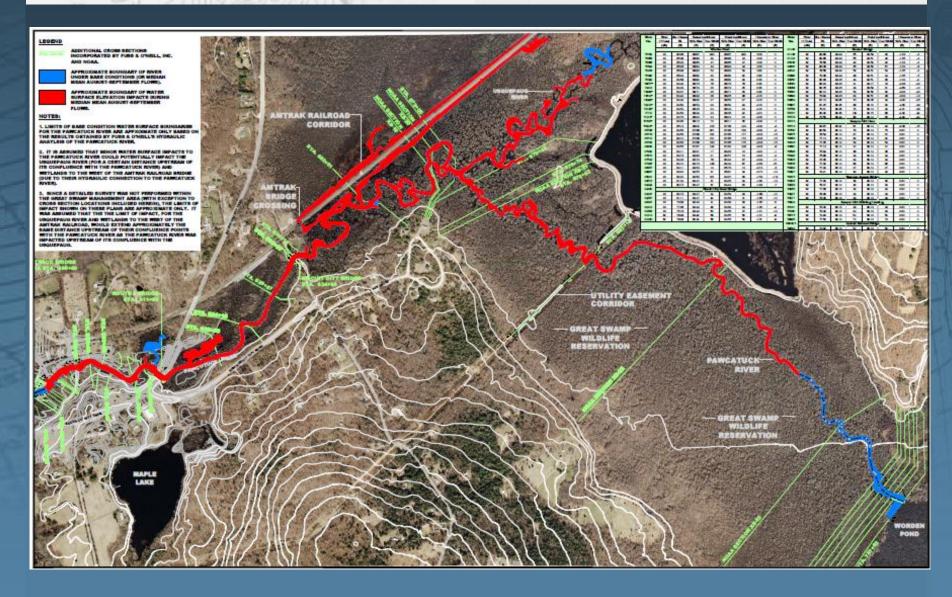

Rock Ramp - Kenyon Fire Suppression System

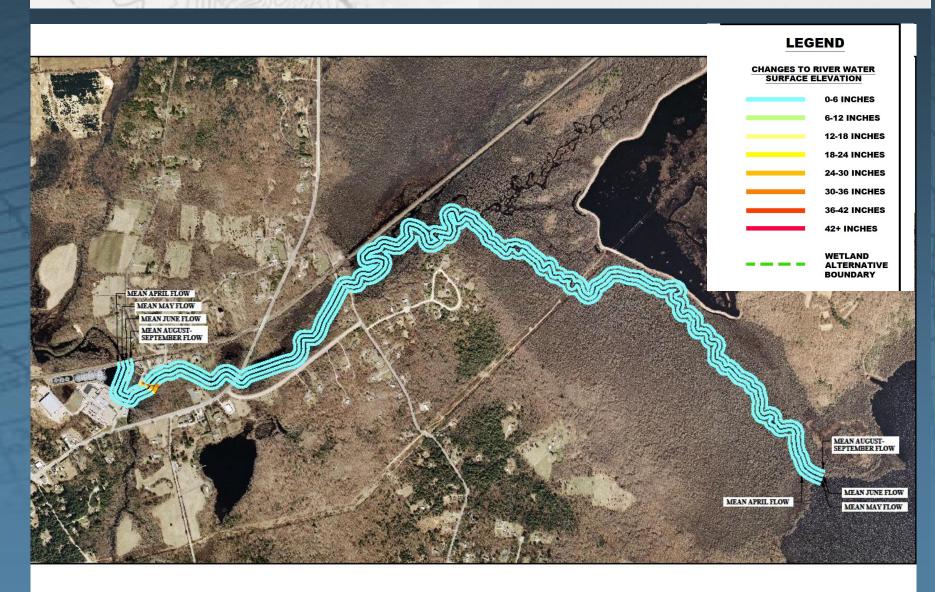
Potential Local Fire Department Dry Hydrant Locations

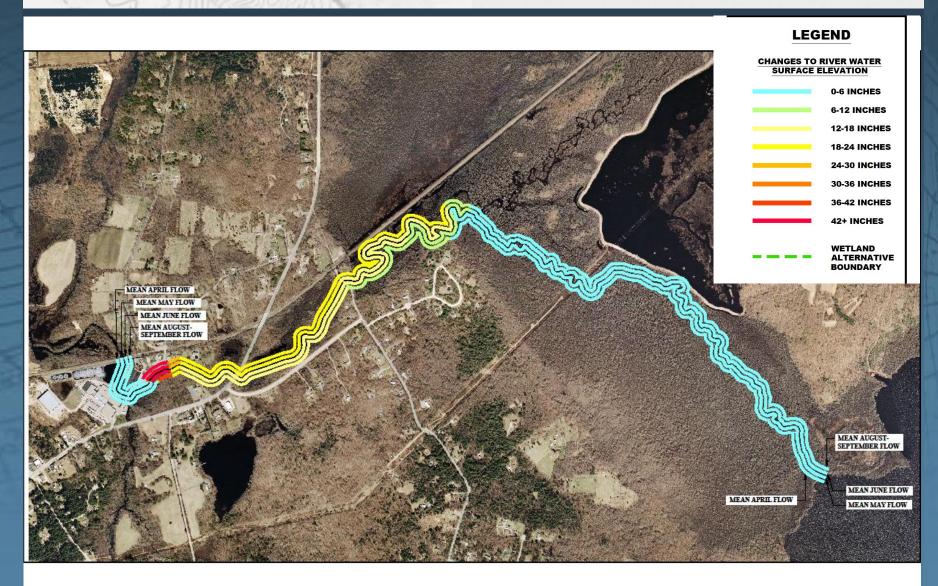
Preliminary Rock Ramp Layout - Plan View

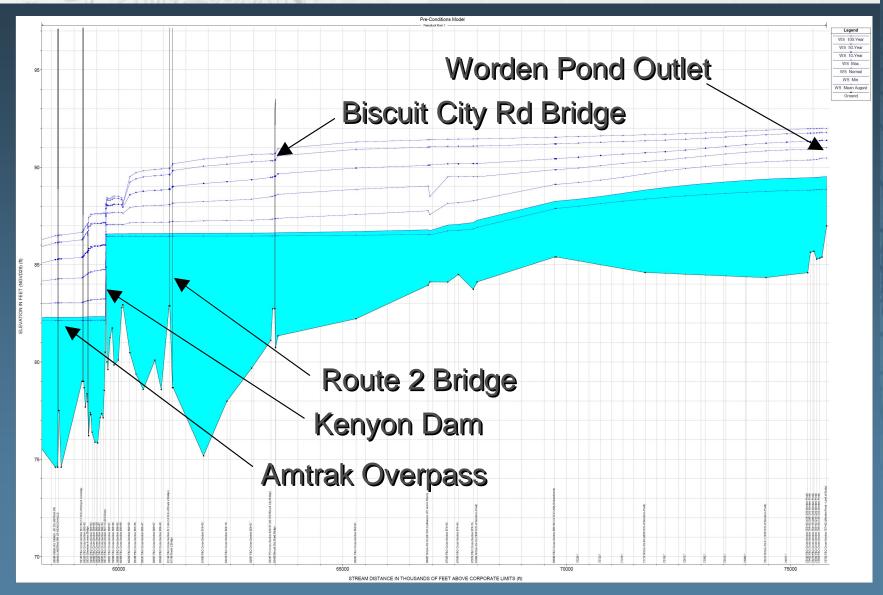

Rock Ramp - Profile View

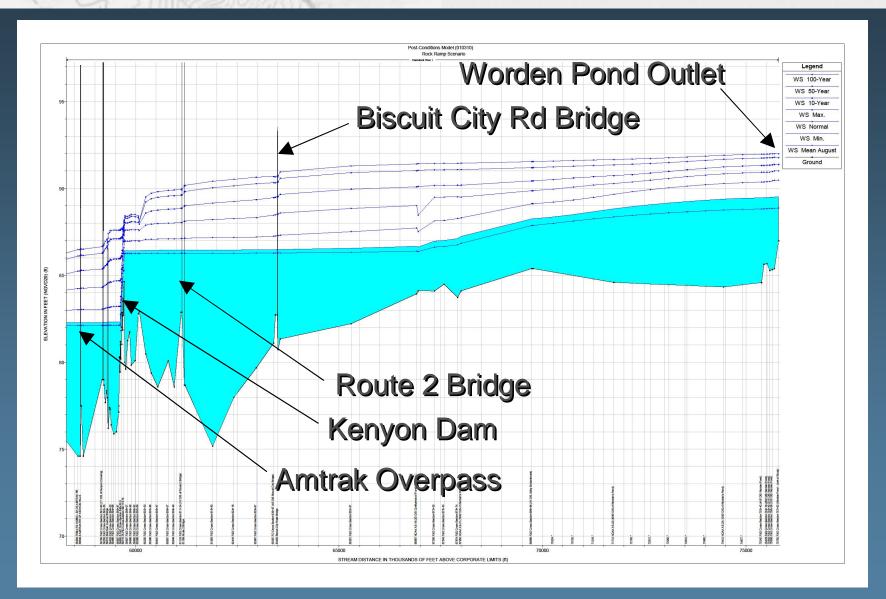
Full Dam Removal Alternative

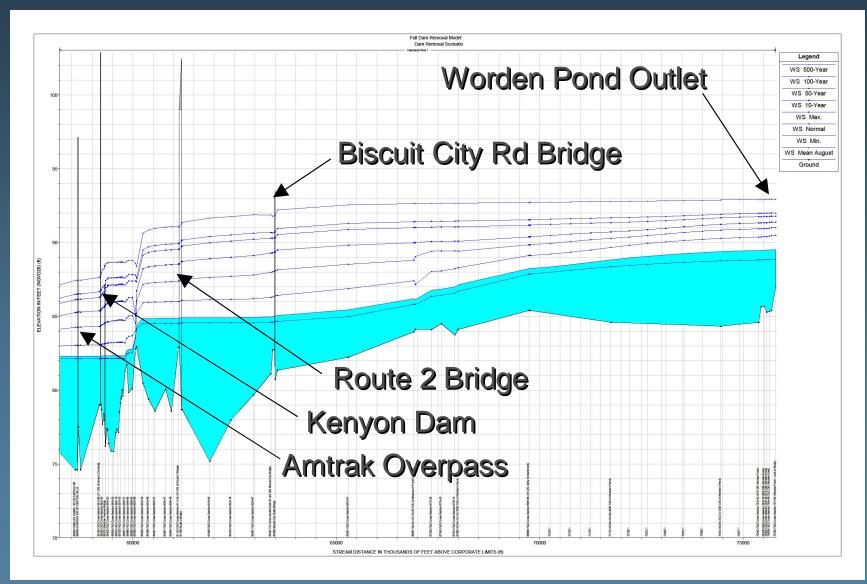

- Removes Dam Spillway No Replacement Structure
- Potential Water Level Change and Sediment Migration
- Potential Effect on Upstream Wetland Resources
- Potential Effect on Upstream Shallow Groundwater Supply Wells
- Potential Scour Protection Needed at Upstream Bridges
- River Likely No Longer Used for Kenyon Industries' Fire Suppression System
- Three Dry Hydrants Installed Along River Channel for Local Fire Department Use
- No Future Maintenance
- Optimal Fish Passage Efficiency

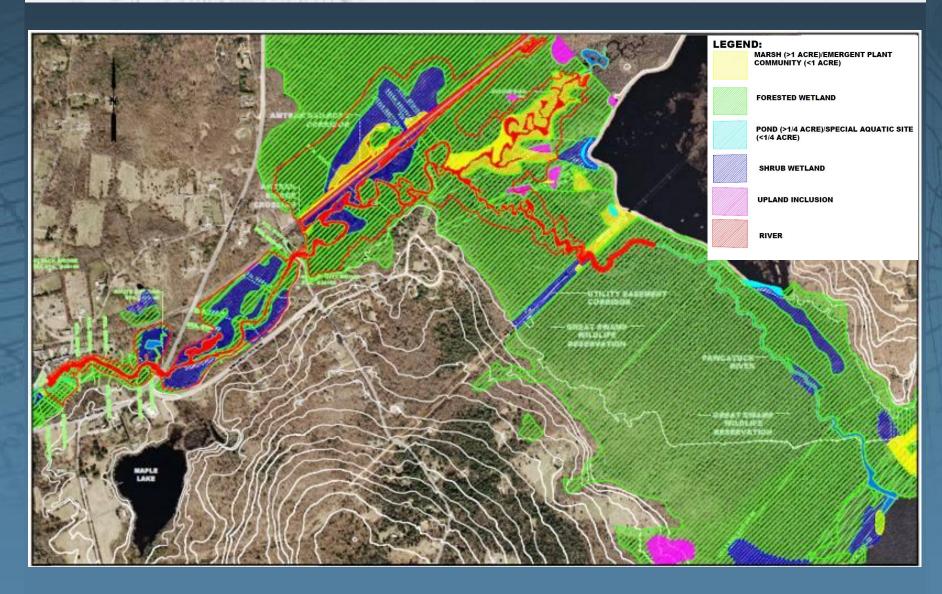

Base Flow Water Surface Elevation Modeling

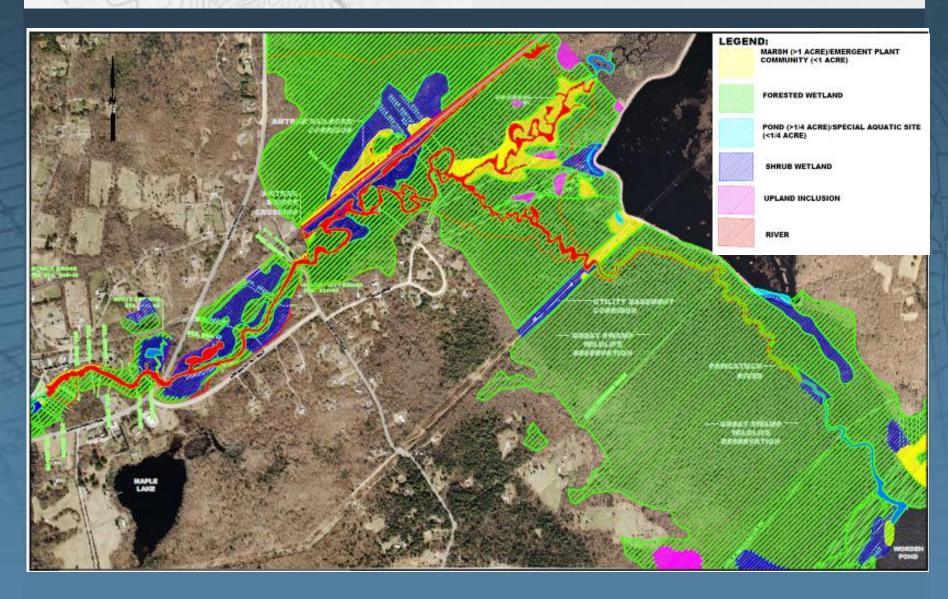

Rock Ramp – Water Surface Change Plan


Full Dam Removal – Water Surface Change Plan


Rock Ramp - Seasonal Water Surface Change Plan


Full Dam Removal – Seasonal Water Surface Change Plan


Existing Conditions – Water Surface Profile


Rock Ramp – Water Surface Profile

Full Dam Removal – Water Surface Profile

Rock Ramp - Wetland Assessment Plan

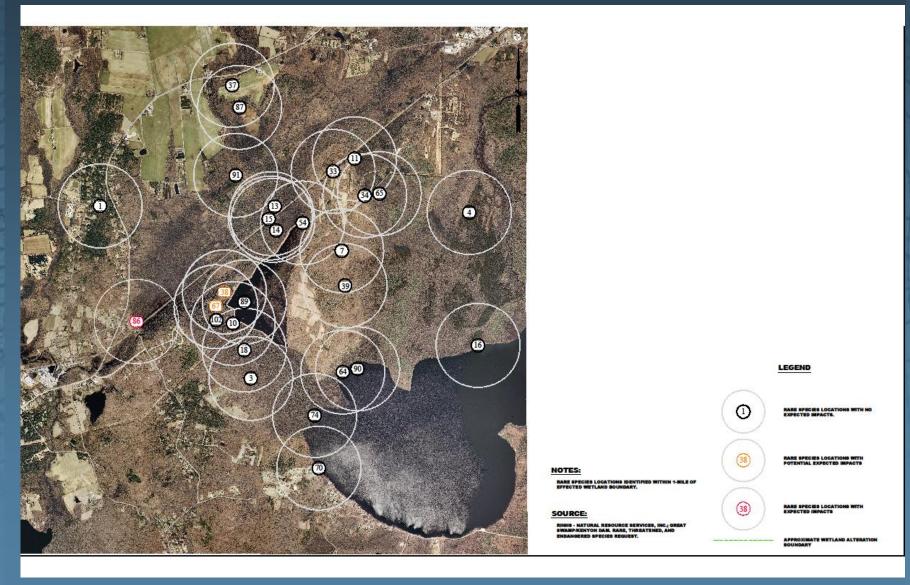
Full Dam Removal - Wetland Assessment Plan

NOTES:

RARE SPECIES LOCATIONS IDENTIFIED WITHIN 1-MILE OF EFFECTED WETLAND BOUNDARY.

SOURCE:

RINHS - NATURAL RESOURCE SERVICES, INC.; GREAT SWAMP/KENYON DAM. RARE, THREATENED, AND ENDANGERED SPECIES REQUEST.


LEGEND

RARE SPECIES LOCATIONS WITH NO EXPECTED IMPACTS

RARE SPECIES LOCATIONS WITH POTENTIAL EXPECTED IMPACTS

Full Dam Removal –Natural History Database

Evaluation of Potential Shallow Groundwater Well Impacts

Alternatives Evaluation Criteria

- Kenyon Industries Fire Suppression System and Local Fire Water Supply
- Potential Effects on Wetland Resource Alterations,
 Rare/Endangered Species and Habitat, Historic Resources
- Potential Effects on Shallow Groundwater Wells
- Potential Sediment Migration (transitional)
- Potential Bridge and River Channel Scour/Instability
- Potential Effects on Recreational Users (boaters, hunters)
- Potential Flood Impacts/Benefits
- Construction Costs / Post-Construction Maintenance Costs

Agenda Kenyon Mill Dam Fish Passage Project

Next Steps

Next Steps Kenyon Mill Dam Fish Passage Project

- State Historic Commission / Narragansett Tribe Coordination (ongoing)
- Potential Wetland Studies/Evaluations
- Continued Negotiations with Kenyon Industries
- Prepare/Transmit Permit Applications
- Public Review Period and Public Workshop
- Final Design
- Bidding and Construction

Agenda Kenyon Mill Dam Fish Passage Project

Questions and Discussion